低碳鋼的應(yīng)力-應(yīng)變曲線
a、拉伸過程的變形:
彈性變形,屈服變形,加工硬化(均勻塑性變形),不均勻集中塑性變形。
工程應(yīng)力 σ=F/A0 ;工程應(yīng)變ε=ΔL/L0;比例極限σP;彈性極限σε;
真應(yīng)變 e=ln(L/L0)=ln(1+ε) ;真應(yīng)力 s=σ(1+ε)= σ*eε 指數(shù)e為真應(yīng)變。 評價材料彈性的好壞。 包申格效應(yīng):金屬材料經(jīng)預(yù)先加載產(chǎn)生少量塑性變形,再同向加載,規(guī)定殘余伸長應(yīng)力增加;反向加載,規(guī)定殘余伸長應(yīng)力降低的現(xiàn)象。 滯彈性:(彈性后效)是指材料在快速加載或卸載后,隨時間的延長而產(chǎn)生的附加彈性應(yīng)變的性能。
真應(yīng)變總是小于工程應(yīng)變,且變形量越大,二者差距越大;真應(yīng)力大于工程應(yīng)力。
彈性變形階段,真應(yīng)力—真應(yīng)變曲線和應(yīng)力—應(yīng)變曲線基本吻合;塑性變形階段兩者出線顯著差異。
2、關(guān)于彈性變形的問題
a、相關(guān)概念
彈性:表征材料彈性變形的能力
剛度:表征材料彈性變形的抗力
彈性模量:反映彈性變形應(yīng)力和應(yīng)變關(guān)系的常數(shù), E=σ/ε ;工程上也稱剛度,
彈性比功:稱彈性比能或應(yīng)變比能,是材料在彈性變形過程中吸收變形功的能力,
彈性滯后環(huán):非理想彈性的情況下,由于應(yīng)力和應(yīng)變不同步,使加載線與卸載線不重合而形成一封閉回線。
金屬材料在交變載荷作用下吸收不可逆變形功的能力,稱為金屬的循環(huán)韌性,也叫內(nèi)耗 理想彈性變形具有單值性、可逆性,瞬時性。但由于實際金屬為多晶體并存在各種缺陷,彈性變形時,并不是完整的。 單晶體和多晶體金屬的彈性模量,主要取決于金屬原子本性和晶體類型。 服和連續(xù)屈服; 屈服強(qiáng)度:表征材料對微量塑性變形的抗力 規(guī)定的原始標(biāo)距百分比時的應(yīng)力。 完全理想彈性體,n=0,沒有硬化能力;K——硬化系數(shù) 縮頸是:韌性金屬材料在拉伸試驗時變形集中于局部區(qū)域的特殊現(xiàn)象。 抗拉強(qiáng)度:韌性金屬試樣拉斷過程中最大試驗力所對應(yīng)的應(yīng)力。代表金屬材料所能承受的最大拉伸應(yīng)力,表征金屬材料對最大均勻塑性變形的抗力。與應(yīng)變硬化指數(shù)和應(yīng)變硬化系數(shù)有關(guān)。等于最大拉應(yīng)力比上原始橫截面積。
彈性變形都是可逆的。
包申格效應(yīng)消除方法:預(yù)先大塑性變形,回復(fù)或再結(jié)晶溫度下退火。
循環(huán)韌性表示材料的消震能力。
a、相關(guān)概念
滑移:滑移系越多,塑性越好;滑移系不是唯一因素(晶格阻力等因素);滑移
孿生:fcc、bcc、hcp都能以孿生產(chǎn)生塑性變形;一般在低溫、高速條件下發(fā)生;
屈服現(xiàn)象:退火、正火、調(diào)質(zhì)的中、低碳鋼和低合金鋼比較常見,分為不連續(xù)屈
上屈服點:試樣發(fā)生屈服而力首次下降前的最大應(yīng)力值,σsu;
下屈服點:試樣屈服階段中最小應(yīng)力,σsl;
屈服平臺(屈服齒):屈服伸長對應(yīng)的水平線段或者曲折線段;
呂德斯帶:不均勻變形;對于沖壓件,不容許出現(xiàn),防止產(chǎn)生褶皺。
(1)規(guī)定非比例伸長應(yīng)力σp:
(2)規(guī)定殘余伸長應(yīng)力σr:試樣卸除拉伸力后,其標(biāo)距部分的殘余伸長達(dá)到規(guī)
(3)規(guī)定總伸長應(yīng)力σt:試樣標(biāo)距部分的總伸長(彈性伸長加塑性伸長)達(dá)到
Hollomon公式:S=Ken ,S為真應(yīng)力,e為真應(yīng)變;n—硬化指數(shù)0.1~0.5,n=1,
b、相關(guān)理論
常見的塑性變形方式:滑移,孿生,晶界的滑動,擴(kuò)散性蠕變。
塑性變形的特點:各晶粒變形的不同時性和不均勻性(取向不同;各晶粒力學(xué)性
能的差異);各晶粒變形的相互協(xié)調(diào)性(金屬是一個連續(xù)的整體,多系滑移;Von Mises至少5個獨立的滑移系)。
的冷熱變形也十分敏感;與應(yīng)變硬化速率并不相等。 放射區(qū)匯聚方向指向裂紋源。 脆性斷裂:基本不產(chǎn)生塑性變形,危害性大。低應(yīng)力脆斷,工作應(yīng)力很低,一般
硬化指數(shù)的影響因素:與層錯能有關(guān),層錯能下降,硬化指數(shù)升高;對金屬材料
兩個塑性指標(biāo):斷后伸長率δ=(L1-L0)/LO*100%;
斷后收縮率:ψ=(A0-A1)/A0*100%
ψ=δ或ψ<δ,不形成縮頸
a、相關(guān)概念
韌性:斷裂前吸收塑性變形功和斷裂功的能力
韌度:單位體積材料斷裂前所吸收的功
韌性斷裂:裂紋緩慢擴(kuò)展過程中消耗能量;斷裂最先發(fā)生在纖維區(qū),然后快速擴(kuò)展形成放射最后斷裂形成剪切唇,放射區(qū)在裂紋快速擴(kuò)展過程中形成,一般
低于屈服極限;脆斷裂紋總是從內(nèi)部的宏觀缺陷處開始;溫度降低,應(yīng)變速度增加,脆斷傾向增加。
穿晶斷裂:裂紋穿過晶內(nèi),可以是韌性斷裂,也可以是脆性斷裂,斷口明亮。 沿晶斷裂:裂紋沿晶界擴(kuò)展,都是脆性斷裂,由晶界處的脆性第二相等造成,斷口相對灰暗。穿晶斷裂和沿晶斷裂可混合發(fā)生。高溫下,多由穿晶斷裂轉(zhuǎn)為沿晶韌性斷裂。
沿晶斷裂斷口:斷口冰糖狀;若晶粒細(xì)小,斷口呈晶粒狀。 剪切斷裂:材料在切應(yīng)力作用下沿滑移面滑移分離而造成的斷裂。(滑斷、微孔聚集型斷裂)
解理斷裂:材料在正應(yīng)力作用下,由于原于間結(jié)合鍵的破壞引起的沿特定晶面發(fā)生的脆性穿晶斷裂。
作用下材料沿某個原子面分開的過程。 格里菲思理論:從熱力學(xué)觀點看,凡是使能量減低的過程都將自發(fā)進(jìn)行,凡使能量升高的過程必將停止,除非外界提供能量。Griffth指出,由于裂紋存在,系統(tǒng)彈性能降低,與因存在裂紋而增加的表面能平衡。如彈性能降低足以滿足表面能增加,裂紋就會失穩(wěn)擴(kuò)展,引起脆性破壞。 多數(shù)金屬的斷裂包括裂紋的形成和擴(kuò)展兩個階段。 按斷裂的性態(tài):韌性斷裂和脆性斷裂;按裂紋擴(kuò)展路徑:穿晶斷裂和沿晶斷裂;按斷裂機(jī)制:解理斷裂和剪切斷裂韌性斷裂和脆性斷裂:根據(jù)材料斷裂前產(chǎn)生的宏觀塑性變形量的大小來確定。通常脆性斷裂也會發(fā)生微量的塑性變形,一般規(guī)定斷面收縮率小于5%則為脆性斷裂。反之大于5%的為韌性斷裂。 解理斷裂總是脆性斷裂,但脆性斷裂不一定是解理斷裂。 不同點:①準(zhǔn)解理小刻面不是晶體學(xué)解理面②解理裂紋常源于晶界,準(zhǔn)解理裂紋常源于晶內(nèi)硬質(zhì)點。準(zhǔn)解理不是一種獨立的斷裂機(jī)理,而是解理斷裂的變種。 硬度是衡量金屬材料軟硬程度的一種性能指標(biāo)。 壓入法——表征塑性變形抗力及應(yīng)變硬化能力 壓痕相似原理:只用一種標(biāo)準(zhǔn)的載荷和鋼球直徑,不能同時適應(yīng)硬的材料或者軟的材料。為保證不同載荷和直徑測量的硬度值之間可比,壓痕必須滿足幾何相似。 優(yōu)點:壓頭直徑較大→壓痕面積較大→硬度值可反映金屬在較大范圍內(nèi)各組成相的平均性能,不受個別組成相及微小不均勻性的影響。
斷裂三種主要的失效形式:磨損、腐蝕、斷裂
解理斷裂是沿特定的晶面發(fā)生的脆性穿晶斷裂,通常總沿一定的晶面分離。
解理與準(zhǔn)解理
共同點:穿晶斷裂;有小解理刻面;臺階及河流花樣
a、硬度概念
劃痕法——表征金屬切斷強(qiáng)度
回跳法——表征金屬彈性變形功
壓頭:淬火鋼球(HBS),硬質(zhì)合金球(HBW)
載荷:3000Kg 硬質(zhì)合金,500Kg 軟質(zhì)材料
保載時間:10-15s 黑色金屬,30s 有色金屬
①度值,②符號HBW,③球直徑,④試驗力(1kgf=9.80665N),⑤試驗力保持時間
缺點:對不同材料需更換壓頭直徑和改變試驗力,壓痕測量麻煩,自動檢測受到限制;壓痕較大時不宜在成品上試驗洛氏硬度以測量壓痕深度表示材料硬度值。
缺點:壓痕較小,代表性差;材料若有偏析及組織不均勻等缺陷,測試值重復(fù)性差,分散度大;用不同標(biāo)尺測得的硬度值沒有聯(lián)系,不能直接比較。 維氏硬度:原理與布氏硬度試驗相同,根據(jù)單位面積所承受的試驗力計算硬度值。不同的是維氏硬度的壓頭是兩個相對面夾角α為136°的金剛石四棱錐體。 努氏硬度:與維氏硬度的區(qū)別1)壓頭形狀不同;2)硬度值不是試驗力除以壓痕表面積,而是除以壓痕投影面積 肖氏硬度:一種動載荷試驗法,原理是將一定質(zhì)量的帶有金剛石圓頭或鋼球的重錘,從一定高度落于金屬試樣表面,根據(jù)重錘回跳的高度來表征金屬硬度值大小,也稱回跳硬度。用HS表示。 沖擊韌性:指材料在沖擊載荷作用下吸收塑性變形功和斷裂功的能力,常用標(biāo)準(zhǔn)試樣的沖擊吸收功AK表示。 低溫脆性:體心立方或某些密排六方晶體金屬及合金,當(dāng)試驗溫度低于某一溫度tk或溫度區(qū)間時,材料由韌性狀態(tài)變?yōu)榇嘈誀顟B(tài),沖擊吸收功明顯下降,斷裂機(jī)理由微孔聚集變?yōu)榇┚Ы饫?斷口特征由纖維狀變?yōu)榻Y(jié)晶狀。tk或溫度區(qū)間稱為韌脆轉(zhuǎn)變溫度,又稱冷脆轉(zhuǎn)變溫度。 韌脆的評價方法:材料的缺口沖擊彎曲試驗,材料的沖擊韌性 韌脆的影響因素:溫度(低溫脆性);應(yīng)力狀態(tài)(三向拉應(yīng)力狀態(tài));變形速度的影響(沖擊脆斷)低溫脆性的本質(zhì):低溫脆性是材料屈服強(qiáng)度隨溫度降低急劇增加的結(jié)果。屈服強(qiáng)度σs的隨溫度降低而升高,而斷裂強(qiáng)度σc隨溫度變化很小。t>tk ,σc >σs ,先屈服再斷裂;t 晶體結(jié)構(gòu):體心立方金屬及其合金存在低溫脆性。普通中、低強(qiáng)度鋼的基體是體心立方點陣的鐵素體,故這類鋼有明顯的低溫脆性。 動,致σs升高,鋼的韌脆轉(zhuǎn)變溫度提高。 顯微組織:晶粒大小,細(xì)化晶粒使材料韌性增加;減小亞晶和胞狀結(jié)構(gòu)尺寸也能提高韌性。 疲勞:金屬機(jī)件在變動應(yīng)力和應(yīng)變長期作用下,由于積累損傷而引起的斷裂現(xiàn)象。 疲勞按環(huán)境和接觸情況:大氣疲勞、腐蝕疲勞、高溫疲勞、熱疲勞及接觸疲勞等。 疲勞按應(yīng)力高低和斷裂壽命分:高周疲勞和低周疲勞。 疲勞的特點:該破壞是一種潛藏的突發(fā)性破壞,在靜載下顯示韌性或脆性破壞的材料在疲勞破壞前均不會發(fā)生明顯的塑性變形,呈脆性斷裂。 疲勞對缺口、裂紋及組織等缺陷十分敏感,即對缺陷具有高度的選擇性。因為缺口或裂紋會引起應(yīng)力集中,加大對材料的損傷作用;組織缺陷(夾雜、疏松、白點、脫碳等),將降低材料的局部強(qiáng)度,二者綜合更加速疲勞破壞的起始與發(fā)展。 疲勞宏觀斷口的特征:疲勞斷裂經(jīng)歷了裂紋萌生和擴(kuò)展過程。由于應(yīng)力水平較低,因此具有較明顯的裂紋萌生和穩(wěn)態(tài)擴(kuò)展階段,相應(yīng)的斷口上也顯示出疲勞源、疲勞裂紋擴(kuò)展區(qū)與瞬時斷裂區(qū)的特征。 位置:多出現(xiàn)在機(jī)件表面,常和缺口、裂紋、刀痕、蝕坑等缺陷相連。但若材料內(nèi)部存在嚴(yán)重冶金缺陷(夾雜、縮孔、伯析、白點等),也會因局部材料強(qiáng)度降低而在機(jī)件內(nèi)部引發(fā)出疲勞源。 特點:因疲勞源區(qū)裂紋表面受反復(fù)擠壓,摩擦次數(shù)多,疲勞源區(qū)比較光亮,而且因加工硬化,該區(qū)表面硬度會有所提高。 數(shù)量:機(jī)件疲勞破壞的疲勞源可以是一個,也可以是多個,它與機(jī)件的應(yīng)力狀態(tài)及過載程度有關(guān)。如單向彎曲疲勞僅產(chǎn)生一個源區(qū),雙向反復(fù)彎曲可出現(xiàn)兩個疲勞源。過載程度愈高,名義應(yīng)力越大,出現(xiàn)疲勞源的數(shù)目就越多。
洛氏硬度試驗優(yōu)缺點:
優(yōu)點:操作簡便、迅速,硬度可直接讀出;壓痕較小,可在工件上試驗;用不同
a、相關(guān)概念
a、金屬疲勞現(xiàn)象
循環(huán)應(yīng)力的波形:正弦波、矩形波和三角波等。
表征應(yīng)力循環(huán)特征的參量有:
最大循環(huán)應(yīng)力σmax,最小循環(huán)應(yīng)力σmin;
疲勞按應(yīng)力狀態(tài)分:彎曲疲勞、扭轉(zhuǎn)疲勞、拉壓疲勞、接觸疲勞及復(fù)合疲勞;
程度確定各疲勞源產(chǎn)生的先后,源區(qū)越光亮,相連的疲勞區(qū)越大,就越先產(chǎn)生;反之,產(chǎn)生的就晚。疲勞區(qū)是疲勞裂紋亞穩(wěn)擴(kuò)展形成的區(qū)域。
展快饅、擠壓摩擦程度上的差異。 狀貝紋線痕跡。 較慢;遠(yuǎn)離疲勞源區(qū)貝紋線較稀疏、粗糙,表明此段裂紋擴(kuò)展較快。 影響因素:貝紋區(qū)的總范圍與過載程度及材料的性質(zhì)有關(guān)。若機(jī)件名義應(yīng)力較高或材料韌性較差,則疲勞區(qū)范圍較小,貝紋線不明顯;反之,低名義應(yīng)力或高韌性材科,疲勞區(qū)范圍較大,貝紋線粗且明顯。貝紋線的形狀則由裂紋前沿線各點的擴(kuò)展速度、載荷類型、過載程度及應(yīng)力集中等決定。 瞬斷區(qū)是裂紋失穩(wěn)擴(kuò)展形成的區(qū)域。在疲勞亞臨界擴(kuò)展階段,隨應(yīng)力循環(huán)增加,裂紋不斷增長,當(dāng)增加到臨界尺寸ac時,裂紋尖端的應(yīng)力場強(qiáng)度因子KI達(dá)到材料斷裂韌性KIc(Kc)時。裂紋就失穩(wěn)快速擴(kuò)展,導(dǎo)致機(jī)件瞬時斷裂。 韌性材料斷口,在心部平面應(yīng)變區(qū)呈放射狀或人字紋狀,邊緣平面應(yīng)力區(qū)則有剪切唇區(qū)存在。 位置:瞬斷區(qū)一般應(yīng)在疲勞源對側(cè)。但對旋轉(zhuǎn)彎曲來說,低名義應(yīng)力時,瞬斷區(qū)位置逆旋轉(zhuǎn)方向偏轉(zhuǎn)一角度;高名義應(yīng)力時,多個疲勞源同時從表面向內(nèi)擴(kuò)展,使瞬斷區(qū)移向中心位置。
斷口光滑是疲勞源區(qū)的延續(xù),其程度隨裂紋向前擴(kuò)展逐漸減弱,反映裂紋擴(kuò)
大小:瞬斷區(qū)大小與機(jī)件承受名義應(yīng)力及材料性質(zhì)有關(guān),高名義應(yīng)力或低韌性材科,瞬斷區(qū)大;反之。瞬斷區(qū)則小。
疲勞曲線的測定——升降法測定疲勞極限 裂紋萌生往往在材料薄弱區(qū)或高應(yīng)力區(qū),通過不均勻滑移、微裂紋形成及長大而完成。 疲勞微裂紋常由不均勻滑移和顯微開裂引起。主要方式有:表面滑移帶開裂;第二相、夾雜物與基體界面或夾雜物本身開裂;晶界或亞晶界處開裂。 從滑移開裂產(chǎn)生疲勞裂紋形成機(jī)理看,只要能提高材料滑移抗力(固溶強(qiáng)化、細(xì)晶強(qiáng)化等),均可阻止疲勞裂紋萌生,提高疲勞強(qiáng)度。 第二相或夾雜物可引發(fā)疲勞裂紋的機(jī)理來看,只要降低第二相或夾雜物脆性,提高相界面強(qiáng)度,控制第二相或夾雜物的數(shù)量、形態(tài)、大小和分布、使之“少、圓、小、勻”,均可抑制或延緩疲勞裂紋在第二相或夾雜物附近萌生,提高疲勞強(qiáng)度。 從晶界萌生裂紋來看,凡使晶界弱化和晶粒粗化的因素,如晶界有低熔點夾雜物等有害元素和成分偏析、回火脆、晶界析氫及晶粒粗化等,均易產(chǎn)生晶界裂紋、降低疲勞強(qiáng)度;反之,凡使晶界強(qiáng)化、凈化和細(xì)化晶粒的因素,均能抑制晶界裂紋形成,提高疲勞強(qiáng)度。 表面狀態(tài)的影響:應(yīng)力集中——機(jī)件表面缺口因應(yīng)力集中往往是疲勞策源地,引起疲勞斷裂,可用Kf與qf表征缺口應(yīng)力集中對材料疲勞強(qiáng)度的影響。Kf與qf越大,材料的疲勞強(qiáng)度就降得越低。且這種影響隨材料強(qiáng)度的增高,更加顯著。
疲勞曲線:疲勞應(yīng)力與疲勞壽命的關(guān)系曲線,即S-N曲線。
用途:它是確定疲勞極限、建立疲勞應(yīng)力判據(jù)的基礎(chǔ)。
有水平段(碳鋼、合金結(jié)構(gòu)鋼、球鐵等):經(jīng)過無限次應(yīng)力循環(huán)也不發(fā)生疲
疲勞過程:裂紋萌生、亞穩(wěn)擴(kuò)展、失穩(wěn)擴(kuò)展三個過程。
疲勞壽命Nf=萌生期N0+亞穩(wěn)擴(kuò)展期Np
金屬材料的疲勞過程也是裂紋萌生相擴(kuò)展的過程。
如何提高疲勞強(qiáng)度——滑移帶開裂產(chǎn)生裂紋角度
表面粗糙度——表面粗糙度越低,材料的疲勞極限越高;表面粗糙度越高,疲勞極限越低。材料強(qiáng)度越高,表面粗糙度對疲勞極限的影響越顯著。
殘余應(yīng)力及表面強(qiáng)化的影響:殘余壓應(yīng)力提高疲勞強(qiáng)度;殘余拉應(yīng)力降低疲勞強(qiáng)度。殘余壓應(yīng)力的影響與外加應(yīng)力的應(yīng)力狀態(tài)有關(guān),不同應(yīng)力狀態(tài),機(jī)件表面層的應(yīng)力梯度不同。彎曲疲勞時,效果比扭轉(zhuǎn)疲勞大;拉壓疲勞時,影響較小。殘余壓應(yīng)力顯著提高有缺口機(jī)件的疲勞強(qiáng)度,殘余應(yīng)力可在缺口處集中,能有效地降低缺口根部的拉應(yīng)力峰值。殘余壓應(yīng)力的大小、深度、分布以及是否發(fā)生松弛都會影響疲勞強(qiáng)度。
表面強(qiáng)化的影響——表面強(qiáng)化可在機(jī)件表面產(chǎn)生殘余壓應(yīng)力,同時提高強(qiáng)度和硬度。兩方面的作用都會提高疲勞強(qiáng)度。(方法:噴丸、滾壓、表面淬火、表面化學(xué)熱處理)硬度由高到低的順序:滲氮→滲碳→感應(yīng)加熱淬火;強(qiáng)化層深度由高到低順序:表面淬火→滲碳→滲氮。 材料成分及組織的影響:疲勞強(qiáng)度是對材料組織結(jié)構(gòu)敏感的力學(xué)性能。合金成分、顯微組織、非金屬夾雜物及冶金缺陷 循環(huán)硬化和循環(huán)軟化現(xiàn)象與位錯循環(huán)運(yùn)動有關(guān)。 在一些退火軟金屬中,在恒應(yīng)變幅的循環(huán)載荷下,由于位錯往復(fù)運(yùn)動和交互作用,產(chǎn)生了阻礙位錯繼續(xù)運(yùn)動的阻力,從而產(chǎn)生循環(huán)硬化。 在冷加工后的金屬中,充滿位錯纏結(jié)和障礙,這些障礙在循環(huán)加載中被破壞;或在一些沉淀強(qiáng)化不穩(wěn)定的合金中。由于沉淀結(jié)構(gòu)在循環(huán)加載中校破壞均可導(dǎo)致循環(huán)軟化。
低周疲勞:金屬在循環(huán)載荷作用下,疲勞壽命為102~105次的疲勞斷裂。
熱機(jī)械疲勞:溫度循環(huán)和機(jī)械應(yīng)力循環(huán)疊加所引起的疲勞。
產(chǎn)生熱應(yīng)力的兩個條件:①溫度變化②機(jī)械約束
來源:沖壓行業(yè)聯(lián)盟
| |
|
? 請關(guān)注 微信公眾號: steeltuber. 轉(zhuǎn)載請保留鏈接: http://www.bjjrgk.com/Steel-Knowledge/1612856783.html
|


